Home / Project and research ideas / Renewable Energy Research Ideas suitable for graduate and post graduate students

Renewable Energy Research Ideas suitable for graduate and post graduate students

Renewable Energy Research Ideas

renewable energy research ideas

1) Low-profile auto-aligning Solar Panel

Solar Energy is in increasing use in high latitude countries, such as the UK. In these regions the position of the sun in the sky varies greatly over the day and over the year. To optimize the amount of solar energy received the solar cells should be aligned to the radiation. It will be is easier to redirect the sun’s rays to be normally incident onto the solar cells. This renewable energy research project will investigate the use of a linear array of prisms/lenses placed over the solar panel that can be mechanically rotated to redirect the sun’s rays as required. For further improvement the solar panel should also rotate allowing full 3-D steering of the incident rays.

2) Hydrogen powered Nightlight

Fuel cells are attracting a lot of interest as an alternative form of generating electricity. Some Fuel Cells can be used in a reversible manner, generating hydrogen from a source of electricity. In this project the use of a Fuel Cell as the energy storage device in a solar powered nightlight is to be investigated. Solar powered nightlights products are already available whereby solar energy is harvested during daylight hours to power an electric light during the night time (or least the evening). This renewable energy research project will investigate the implications of replacing the existing energy storage device (typically a Battery or Capacitor) with a reversible PEM Fuel Cell.

3) Micro-grid central controller for local area voltage control

Micro-grids are considered promising in managing network components located in the low voltage network, such as distributed generators, electric vehicles and responsive loads. The concept of micro-grids is that the components in the micro-grid are controlled for a given purpose. This purpose is often control of voltage levels. If voltage values at some point in the micro-grid area deviate from given limits, the micro-grid central controller takes action to rectify this by either modifying the generation or the demand levels. In this renewable energy research project, a basic micro-grid central controller will be designed, which will be able to measure voltage values in specific parts of the network and regulate micro-grid components.

4) Differential solar tracking for a concentrated solar device

The sun is not static throughout the day, but it moves from east to west. Since the efficiency of photovoltaic devices is dependent on the angle that the solar rays fall on the surface of the device, the photovoltaic devices need to track the sun’s movement throughout the day. This is done by devices called trackers. In this project, a basic solar tracking device will be developed and tested, based on the principle of differential measurements from two non-aligned solar sensors. The sensors will be mounted on either side of a concentrative reflector, which will be focused on a central solar collection point

5) Wind turbine pitch control implementation

Efficient wind turbine operation depends on many factors, such as tracking the wind direction so that it is always facing the wind. Another very important factor is the angle at which the wind hits the blades, which is called the Angle of Attack (AoA). In large wind turbines, the blades can rotate on their main axis, to optimise the AoA, therefore optimising the wind turbine power output. This is called pitch control. The pitch controller is sensing the wind speed and direction and is calculating the optimal pitch angle for the blade, rotating it accordingly. The aim of this project is to design and build a controller for pitching a wind turbine blade.

6) Building a SCADA system for a photovoltaic inverter

Photovoltaic panels produce Direct Current (DC), therefore they need inverters to be able to convert their output to AC and feed it to the grid. Photovoltaic inverters have the standard features found in any inverter, but also specific features specialised to their application as photovoltaic inverters. Some of these features include power factor control, Maximum Power Point Tracking (MPPT), etc. The components of an energy system, such as inverters or generators, can be controlled by a Supervisory Control And Data Acquisition (SCADA) system. This system enables the operator to collect data and control the devices connected to it (e.g. record the power output of an inverter, or switch off a generator). The aim of this renewable energy research project is to build a basic SCADA system for a photovoltaic inverter, with the following characteristics: (i) be able to communicate with the inverter, (ii) be able to record inverter parameters and (iii) be able to change at least one controllable parameter.

7) Distributed generation protection during islanding

Distributed generators are defined as small-scale generators connected to the distribution system, instead of the transmission system. The incident when a part of the distribution network is isolated, e.g. due to a fault, is called islanding, because network “islands” are created. When islanding occurs, the interconnection regulations state that all generators which are connected to the isolated part must be disconnected. This is to prevent damage to equipment and potential danger to workers who think that the lines are de-energised. The aim of this renewable energy research project is to build a protection device (e.g. differential relay) which disconnects a distributed generator when islanding occurs.

8) Energy storage using compressed gas storage tank/compressor

Small scale electrical energy storage has up to now mainly been solved by batteries. Although super capacitors are on the rise, their storage capacity is still limited and their advantages only apply in certain environments. The requirement for affordable small and large scale storage  is only increasing with the rise of sustainable energy gathering, since these energy sources are generally not continuous in output, therefore a proper buffering mechanism is required.

Depending on which type of energy needs to be stored, different solutions would be better, but in general finding sustainable methods need to get a higher focus. For example for electrical energy storage, quite often batteries are used, but these have a lifetime of about 5 years, depending on their type they have different advantages and recycling them can be an issue.

This renewable energy research project considers looking at one alternative for storing energy, namely compressed gas. Compressing gases is quite straight forward, but also has a number of problems associated with it: 1) depending on the gas being compressed different safety standards might need to be complied with, 2) during the compression heat may be produced, which reduces the efficiency of the conversion process, 3) storage of compressed gas, particularly under high pressure requires strong storage tanks, which are generally heavy and expensive.

The company VV-TEC  tries to address a few of the above problems, by presenting a different type of storage tank in the form of a pressure vessel. This pressure vessel cannot only serve for storage under high pressure, but can also be used as the actual compressor.

Although the proposal is there, there is still a variety of applications in how the vessel can be used i.e. building constructions, wind turbine towers, pipelines etc., and it would be useful to get some idea of the more efficient ways of using this system. The overall efficiency of a compressed gas storage system and so on. A test rig that compares the new method with current metal tanks can be made available, however overall testing of this new mechanism is required. This should then hopefully lead to improved proposals on how to use this system for energy storage.

9) Reluctance motor for electric vehicle

For a long time the use of a reluctance motor was not very viable due to a lack of knowledge and problems with the control. Now it has been used and optimised for electric vehicles. This renewable energy research project will look into the functioning of a reluctance motor to get a full understanding of its behaviour and then design a control system so it can be used for motor and generator functionality. A prototype of the system should be build and efficiency measured and compared with other type motors.


About Syed Noman ud din

Syed Noman ud din is an Electrical Engineer and working in Industry from last 3 years. He writes technical articles for electrical and electronic engineers. He has also published several research publications in renowned international journals.

Check Also

Electrical Electronic Research ideas suitable for BS and MS students

Contents1 Electrical Electronic Research ideas for Engineering students1.0.1 1) Advanced Driver Steering Wheel Analyzer 1.0.2 …


  1. Good day

    I want to pursue MEng in Energy Management/Renewable Energy, but am struggling to find a suitable topic.

    Please help

Leave a Reply

Your email address will not be published. Required fields are marked *